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Abstract

The emergence of universal properties such as the scale-free property self-similarity, and modu-

larity, as key features of complex networks raises the fundamental question of the governing growth

process according to which these structures evolve. The possibility of a unique growth mechanism

for biological and social networks, as well as computers in the Internet, is of interest to the spe-

cialist and the laymen alike, as it promises to uncover the origins of collective behavior. Here, we

bring the concept of renormalization from critical phenomena as a mechanism for the growth of

fractal and non-fractal modular networks. We show that the key principle that gives rise to the

fractal architecture of the networks is a strong effective ”repulsion” between the most connected

nodes (hubs) on all length scales, i.e. the hubs tend to be very disperse in the network (and not

clump together). We show that the renormalization growth naturally explains to the emergence of

modules in biological networks, which is crucial in understanding the structure of the biochemical

functional classes. More importantly, we find that the self-similar property of networks significantly

increases the robustness of such networks against targeted attacks on hubs, as compared to the

very vulnerable non fractal scale-free networks.
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I. INTRODUCTION

Recent developments in the field of complex networks have led to the development of new

methods to examine the structure of a wide variety of systems ranging from sociological,

technological to biological networks which identify universal properties [1, 2, 3, 4, 5] with

important unifying conclusions. In particular the emergent similar properties of systems

such as the network of protein-protein interactions, the map of metabolic pathways and the

hyperlinked pages in the web, suggest that there is a self-organizing principle according to

which the networks have evolved. They all exhibit the small-world property [6, 7] and a

power-law probability distribution of the number of links per node (the degree) which earned

them the name “scale-free” [8]. The fact that networks are scale-free was shown to have

important implications on network robustness to random failures and vulnerability to attack

[9, 10, 11]. Further investigation of the network topology then showed that there are two

universality classes in complex networks: while some networks such as in biology and the

WWW are length-scale invariant or self-similar fractals, other networks such as the Internet

are not fractals [12, 13].

The “democratic” rule of the seminal Erdös-Rényi model [14] (where the nodes are con-

nected at random) was first invoked to explain the small world effect [7]. It was then replaced

by the “rich-get-richer” principle of preferential attachment [8] to explain the scale-free prop-

erty [15]. However these rules do not capture the fractal topologies found in diverse complex

networks. Here, we present a new view of network dynamics in which, rather than creating

new nodes and links in an additive random way such as in models of preferential attachment

[8], new nodes are generated multiplicatively in a self-similar modular fashion.

We formalize these ideas by borrowing the concept of “length scale renormalization” from

critical phenomena [16] which naturally reproduces the modular structure of complex net-

works. We show that the emergence of self-similar fractal networks is due to the strong

repulsion (anticorrelations) between the hubs at all length scales. In this paradigm, the

rich get richer but at the expense of the ”poor”. In other words, the hubs prefer to grow

by connections with less-connected nodes rather to another hubs, which can be viewed as

an effective repulsion between hubs. On the other hand, weakly anticorrelated or uncor-

related structures generate non-fractal topologies. What are the practical implications of

such in-depth understanding of network structures? We show that the renormalization ap-
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proach explain the emergence of the functional modules in metabolic networks and that

self-similarity increases the robustness of networks under intentional attacks.

II. THE RENORMALIZATION GROWTH APPROACH

The renormalization scheme tiles a network of N nodes with NB(ℓB) boxes using the

so-called box-covering algorithm [12, 17], as shown in Fig. 1a. The boxes contain nodes

separated by a distance ℓB (distance is measured as the length of the shortest path between

nodes). Each box is subsequently replaced by a node, and the process is repeated until the

whole network is reduced to a single node. The way to distinguish between fractal and non

fractal networks is represented in their scaling properties as seen in Fig. 2a and 2b. Fractal

networks satisfy (Fig. 2a) :

NB(ℓB)/N ∼ ℓ−dB

B , kB(ℓB)/khub ∼ ℓ−dk

B . (1)

Here khub is the degree of the largest hub inside the box and kB(ℓB) is the degree of the

box (Fig. 1a). The two exponents dB and dk are the fractal dimension and the degree

exponent of the boxes, respectively. For a non-fractal network (Fig. 2a), we have dB → ∞

and dk → ∞; the scaling laws in Eq. (1) are replaced by exponential functions.

Based on this, we propose a network growth dynamics as the inverse of the renormal-

ization procedure. Thus, the coarse-grained networks of smaller size are network structures

appearing earlier in time, as exemplified in Fig. 1a. A present time network with Ñ(t) nodes

is tiled with NB(ℓB) boxes of size ℓB. Each box represents a node in a previous time step,

so that Ñ(t− 1) = NB(ℓB). The maximum degree of the nodes inside a box corresponds to

the present time degree: k̃(t) = khub, which is renormalized such that k̃(t − 1) = kB(ℓB).

This dynamics consequently leads to a self-similar modular structure where modulus are

represented by the boxes. In real networks, modularity is evident in the biochemical classes

in cellular networks, the diverse communities within social networks, domains of nodes in the

WWW, just to name a few [18, 19, 20, 21]. Modularity has been identified with the scaling

of the clustering coefficient [19]. Here we propose an alternative definition of ”modular

network” as one whose statistical properties remain invariant under renormalization. In

particular a modular network has an invariant scale-free degree probability to find a node

with degree k, P (k) ∼ k−γ [8], i.e. the exponent γ remains the same.
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III. CORRELATION PROFILES

A critical question remains: how are the new self-similar nodes and boxes connected with

the ancestral ones? We can answer this question by investigating the statistics of the links

between the nodes and the boxes. Studying the correlation profile in real networks similar to

that considered in [22, 23, 24] supports the relation between fractality and anticorrelations.

The correlation profile compares the joint probability distribution, P (k1, k2), of finding a

node with k1 links connected to a node with k2 links with their random uncorrelated coun-

terpart, Pr(k1, k2). This is obtained by random swapping of the links, yet preserving the

degree distribution [22]. A plot of the ratio R(k1, k2) = P (k1, k2)/Pr(k1, k2) provides evi-

dence of any correlated topological structure deviating from the random uncorrelated case.

At first glance, a qualitative classification can be obtained by comparing the correlation

profiles of several networks by normalizing the ratio R(k1, k2) to that of a given network,

for instance the WWW. This serves as a signature of the strength of the hubs tendency

to connect with each other or not. Figure 2a and 2b shows the correlation profiles of the

fractal metabolic cellular network of E. coli [25] and the non-fractal Internet at the router

level [26]: the fractal network poses a higher degree of anticorrelations compared to the

WWW; nodes with a large degree tend to be connected with nodes of a small degree. On

the other hand, the non-fractal Internet is less anticorrelated than the WWW. Thus, fractal

topologies seem to display a higher degree of hubs repulsion in their structure than the non-

fractals. However, for this property to be the real hallmark of fractality it is required that

the anticorrelations appear not only in the original network (captured by R(k1, k2)) but also

for the renormalized networks at different length scales.

A. Assortative parameter

Properties such as the assortative or dissortative tendency of hubs to attract or repel

each other have been identified as important to unravel the structural properties of complex

networks. In particular Newman [24] considers the Pearson coefficient r of the degrees at the

end of an edge, and finds that most networks such as the Internet, WWW, and biological

networks are dissasortative with r < 0, while collaboration networks are assortative with

r > 0.
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These results are in general agreement with our findings. In general, most networks are

dissasortative, since the hubs, having a large number of connections, will necessarily connect

to less connected nodes. This is the property that is captured by the assortative parameter.

However, the parameter r is not able to capture the strength of the anticorrelations needed

to differentiate between fractals and non fractals networks. One of the main points of the

present work is to propose new quantities to provide a measurement of the strength of the

anticorrelations needed to develop a fractal topology.

For instance, in the case of the non fractal model Mode I, we find that the Pearson

coefficient could be positive or negative depending on the growth rate of the network which

is specified by the factor m of the multiplicative growth. For instance in the case of Mode I

we find that for m = 1.2 the networks is assortative while for m = 1.8 the network became

dissortative.

Thus, this parameter is not able to distinguish between fractals and non fractals since

for the same model we find different values of r. Moreover, we find that the parameter r is

not invariant under renormalization. Thus, it cannot identify the dissasortative property at

all length scales. However, it captures the same general trend as found in the present work.

For all fractal topologies found in Nature we find that r < 0.

IV. THEORY

To quantitatively link the anticorrelations at all length scales with the emergence of

fractality we next develop a mathematical framework and propose a mechanism for fractal

network growth. In the case of modular networks, owning to Eqs. (1), we require that the

different quantities grow as:

Ñ(t) = nÑ(t − 1),

k̃(t) = sk̃(t − 1),

L̃(t) + L0 = a(L̃(t − 1) + L0),

(2)

where n > 1, s > 1 and a > 1 are time-independent constants. The first equation is

analogous to the multiplicative process naturally found in many population growth systems

[27]. The second relation is analogous to the preferential attachment rule [8], which gives rise

to the scale-free topology. The third equation describes the growth of the diameter of the
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TABLE I: Relation between time evolution and renormalization.

Quantity Time evolution Renormalization

diameter L̃(t1) + L0 L/(ℓB + L0)

L̃(t2) + L0 L

number of Ñ(t1) NB(ℓB)

nodes Ñ(t2) N

degree k̃(t1) k(ℓB)

k̃(t2) khub

hub-hub k̃(t1) k(ℓB)

links ñh(t2) nh(ℓB)

network (L̃(t), as defined by the largest distance between nodes) and determines whether

the network is small-world [6, 7] and/or fractal [12]. Here we introduce the characteristic

size L0, the importance of which lies in describing the non-fractal networks. Since every

quantity increases by a factor of n, s and a, we first derive the scaling exponents in terms

of the microscopic parameters: dB = ln n/ ln a, dk = ln s/ ln a. The exponent of the degree

distribution satisfies γ = 1 + ln n/ ln s.

Next we fully develop the theoretical framework of renormalization and its analogy with

the time evolution of networks.

We obtain the relation between two times t2 > t1 as

L̃(t2) + L0 = at2−t1(L̃(t1) + L0),

Ñ(t2) = nt2−t1Ñ(t1),

k̃(t2) = st2−t1 k̃(t1),

ñh(t2) = et2−t1 k̃(t1).

(3)

The relationship between the quantities describing the time evolution and the renormal-
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ization is shown in Table I. They are formalized as follows:

ℓB + L0 = (L̃(t2) + L0)/(L̃(t1) + L0) = at2−t1

N (ℓB) ≡ NB(ℓB)/N = Ñ(t1)/Ñ(t2) = nt1−t2 ,

S(ℓB) ≡ kB(ℓB)/khub = k̃B(t1)/k̃B(t2) = st1−t2 ,

E(ℓB) ≡ nh(ℓB)/kB(ℓB) = ñh(t2)/k̃(t1) = et2−t1 .

(4)

Here we define the additional ratios, N and S. Replacing the time interval t2 − t1 by

ln(ℓB + L0)/ ln a, as obtained from the first equation in (4), we obtain:

N (ℓB) = (ℓB + L0)
− lnn/ ln a,

S(ℓB) = (ℓB + L0)
− ln s/ ln a,

E(ℓB) = (ℓB + L0)
− ln(1/e)/ ln a,

(5)

or

N (ℓB) = (ℓB + L0)
−dB , dB ≡ ln n/ ln a,

S(ℓB) = (ℓB + L0)
−dk , dk ≡ ln s/ ln a,

E(ℓB) = (ℓB + L0)
−de , de ≡ ln(1/e)/ lna.

(6)

Notice that we have considered L0 = 0 in Eqs. (1) for simplicity. Equations (6) are

more general and accommodate the case of non fractal networks which are characterized by

exponential functions:

N (ℓB) ∼ exp(−ℓB/ℓ0),

S(ℓB) ∼ exp(−ℓB/ℓ′0).
(7)

These expressions arise from Eqs. (6) by taking the limit of dB → ∞, dk → ∞, and

L0 → ∞ while L0/dB → ℓ0 and L0/dk → ℓ′0, where ℓ0 and ℓ′0 are characteristic constants of

the network.

V. GROWTH MODES

In order to incorporate the growth modes in the dynamical Eqs. (2) we consider, without

loss of generality, two different modes of connectivity between boxes. (i) Mode I with
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probability e (Fig. 1b): two boxes are connected through a direct link between their hubs

leading to hub-hub attraction. (ii) Mode II with probability 1 − e (Fig. 1c): two boxes are

connected via non-hubs leading to hub-hub repulsion or anticorrelations. We will show that

Mode I leads to non-fractal networks while Mode II leads to fractal networks.

Formally, for a node with k̃(t) links at time t, we define ñh(t + 1) as the number of links

which are connected to hubs in the next time step (see Fig. 5a). Then the probability e

representing the hub-hub attraction satisfies:

ñh(t) = e k̃(t − 1). (8)

Using the analogy between time evolution and renormalization we introduce the analo-

gous quantity, nh(ℓB), as a function of the length of boxes that defines the ratio E(ℓB) ≡

nh(ℓB)/kB(ℓB) (for the nonlinear relation between t and ℓB, leading to the ℓB dependence on

E . In the extreme case of strong hub attraction with the hubs of the boxes connected at all

length scales we have E(lB) ∼ constant. On the other hand, hubs repulsion leads to decreas-

ing E(ℓB) with ℓB. From scaling we obtain a new exponent de = − ln e/ ln a characterizing

the strength of the anticorrelations in a scale-invariant way:

E(ℓB) ∼ l−de

B . (9)

Figure 2e shows E(ℓB) for two real fractal and non fractal networks: a map of the WWW

domain nd.edu consisting of 352,728 web-sites [28] and a map of the Internet at the router

level consisting of 284,771 nodes [26]. We find that for the fractal WWW, de = 1.5, indicating

that it poses strong anticorrelations. On the other hand, the non-fractal Internet shows

E(ℓB) ∼ constant. These results confirm that indeed fractal networks have strong hub

repulsion at all length scales and non fractal networks have weak hub repulsion or none.

A. Definition of h(bk). Calculation of de for biological networks

The exponent de is the key to understanding the scale-invariant hub repulsion in networks.

However, since it is based on the scaling with the size of the boxes, it requires a large network

to be precisely calculated. The biological networks contain a only a relative small number

of nodes in comparison with the WWW and the Internet and therefore require a different

method to evaluate the exponent de. We introduce a new scale-invariant quantity, related
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to Eq. (9), that allows the measurement of de for small networks since it is based on the

scaling of the degree rather than on the distance ℓB which is very small in these biological

networks.

For the biological networks we obtain de = 1.1 for the protein-protein interaction network

of H. sapiens [32] and de = 4.5 for the metabolic network of E. coli [19, 29]. This implies that

the biological networks are even more anticorrelated than the WWW. Since the biological

networks have smaller dB as well, this result further suggests that repulsion between hubs

are at the origin of the fractal structure of networks.

We consider the ratio h(bk)/k, where h(bk) is the number of neighbors with degree larger

than bk of a node with degree k (b is an arbitrary positive number, large b corresponds to the

identification of the hubs). Thus, for a given b, a fast decay with k of h(bk) corresponds to

stronger anticorrelations. This quantity is capable of determining the degree of hub repulsion

needed to produce fractal topologies. From scaling we obtain

h(bk)/k ∼ k−ǫ (10)

with

ǫ = 1 + de/dk. (11)

To prove Eq. (11) we assume t∗ as the current time in the evolution of the network,

we set b = s−∆, and the new generated degree at a time t satisfies: k ∼ st∗−t, so that

bk ∼ st∗−(∆+t). At time ∆+ t, we have s(∆+t)−t = b−1 neighbors whose degrees will be larger

than k. Moreover, only a fraction et∗−(t+∆) of the links s∆ are left in the network. These

are the links connecting boxes via Mode I. Then we obtain h(bk) ∼ s
ln e

ln s
(t∗−t) = k−de/dk , or

h(bk)/k ∼ k−ǫ, with ǫ = 1 + de/dk. We note that Eq. (11) is analogous to the relation

γ = 1 + dB/dk found in [12].

Therefore, the exponent ǫ can be used to obtain an estimate of de if we know the exponent

dk. The advantage of this method to obtain de over the direct calculation using Eq. (9) is

that the latter requires a large network since it is based on the scaling with the distance

ℓB, and the distances are very small unless the networks is very large. On the other hand,

Eq. (10) is based on the scaling with the degree k which in general has a larger range, as

measured in decades of available data, than the distance.

We first test the prediction Eq. (11) by calculating h(bk) for the WWW and the Internet

for which we know de independently. Figure 3a shows the results for the WWW and the
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Internet confirming our previous calculations. We find ǫ = 1.5 which together with dk = 2.5

[12] gives de = (ǫ − 1)dk = 1.5 consistent with the previous estimation using Eq. (9) in the

main text. The calculations for the Internet also confirm the values of the exponents. We

find ǫ = 1 in agreement with the value de = 0 found in the main text.

We also test that h(bk)/k is independent of the value of b as shown in Fig. 3b. Moreover,

h(bk)/k is invariant under renormalization since we find the same scaling exponent ǫ for

different renormalized networks at several scales ℓB as shown in Fig. 3c for the WWW.

Next, we apply this procedure to calculate de for the smaller biological networks (lees

than 1000 nodes) of the protein-protein interactions of H. sapiens [32] and the metabolic

network of E. coli [19, 29]. Fig. 3d shows the results. We obtain ǫ = 1.5 (dk = 2.2) and

ǫ = 2.8 (dk = 2.5) for the protein interaction network and the metabolic network indicating

that de = 1.1 and de = 4.5, respectively. In general, we obtain larger values of de than in the

WWW, which implies that the biological networks are even more anticorrelated. Since the

biological networks have smaller dB as well, this result further shows that anticorrelations

are at the origin of the fractal structure of networks.

In Fig. 4 we classify many real networks and all the available models in terms of their

fractality and correlated properties in the plane (dB, ǫ). The general trend follows our

prediction that stronger hub repulsion (larger de) induces more pronounced fractal properties

(smaller dB), as exemplified by the case of biological networks. Conversely, the loss of

fractality (dB → ∞) occurs as the anticorrelations disappear, e.g. in the Internet.

VI. PREDICTIONS OF THE MINIMAL MODEL

In Fig. 5 we investigate the predictions of the different modes separately. While each

mode leads to scale-free renormalized structures, they differ in their fractal and small-world

properties. Mode I exhibits the small-world effect, but is not fractal due to its strong hub-

hub attraction. On the other hand, Mode II alone gives rise to a fractal topology. However,

the anticorrelations in Mode II are strong enough to push the hubs far apart, leading to the

breakdown of the small-world property.

These results suggest that the simultaneous appearance of both small-world and fractal

properties in scale-free networks is due to a combination of both growth modes. Such a

structure is visualized in Fig. 5a for e = 0.8, n = 5, a = 1.4, s = 3. Supporting evidence is
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given by (i) Fig. 5b showing how the model with e = 0.8 is more anticorrelated than the e = 1

model (Mode I) by plotting the correlation profile of the ratio Re=0.8(k1, k2)/Re=1(k1, k2),

(ii) Fig. 5c displaying the power law dependence of NB versus ℓB for the fractal structure of

e = 0.8 and the exponential dependence of the non fractal structure of e = 1, and (iii) Fig.

5d showing how Mode I reproduces E(ℓB) ∼ constant while the e = 0.8 model gives rise to

E(ℓB) ∼ ℓ−de

B with de = − ln 0.8/ ln 1.4 = 0.66, as predicted by the analytical formula and

in agreement with the empirical findings of Fig. 2e on real networks. Although simplistic

(for instance, we did not consider the introduction of loops, although this can be easily done

in a self-similar way), this minimal mechanism clearly captures the essential properties of

networks, one of which is the relationship between anticorrelations and fractality.

Additional supporting evidence is given in Fig. 6 by (a) calculating the mean num-

ber of nodes (mass) of the boxes tiling the network using the box covering methods,

〈MB(ℓB)〉 ≡ N/NB(ℓB), and (b) by averaging over boxes of size ℓc around a randomly

chosen node to obtain the local mass 〈Mc(ℓc)〉 (the so-called cluster growing method, see

[12, 17]). The results show how the minimal model reproduces one of the main properties of

fractal networks [12]: the power-law relation for the global average mass 〈MB(ℓB)〉 ∼ ℓdB

B ,

with dB = ln 5/ ln 1.4 = 4.8, as a signature of fractality consistent with Eq. (1), and the

exponential dependence of the local mass 〈Mc(ℓc)〉 ∼ eℓc/ℓ0 as a signature of the local small-

world effect: ℓc ∼ ln〈Mc〉. Note that the cluster growing method is actually a way to

measure the distance while the box covering method measures the fractality [12] (the global

small-world properties are in the next section).

A. Global small world: short cuts in the network.

An important factor in the dynamics of real networks is the existence of randomness or

noise in the growth process. The simplest type of noise is the appearance of random con-

nections between nodes as exemplified in the Watts-Strogatz model of small world networks

[6]. To investigate how this noise affects the fractality of networks, we use the model and

modify the dynamical law as following: at each time step, pK(t) number of links will be

added in at random, here K(t) is the total number of links at time t, and p is a constant to

control the fraction of the noise. We build a model which is fractal, small-world and scale-

free with parameter m = 1.5, e = 0.5, and add p = 1% random connections at each time
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step. Our analytical considerations predict a box dimension dB = 2 in the case of absence

of noise. The numerical simulation (see Fig. 7a) shows that this theoretical prediction of

dB still fits very well the simulated data except for a small deviation at large box sizes, i.e.

the added noise appears as an approximately exponential tail for large distances. Thus the

fractal properties would be still valid in presence of this kind of noise as long as the noise is

not very large. Interestingly, this method could be used to test the appearance of noise in

real complex networks, or to asses the quality of the data in for instance protein interaction

networks obtained by yeast two hybrid methods which are known to give rise to many false

positives; a study that we will perform in the future.

The most interesting results is that the addition of noise leads to the small world effect

at the global level. In principle the existence of fractality seems to be at odds with the

small-world effect. Fractality implies a power-law dependence on the distance, while the

small-world implies a exponential dependence [12]. Above, we show how the combination of

Mode I and Mode II of growth leads to a fractal global property and a local small-world effect.

Here we show that by adding a fraction of short-cuts in a fractal network, we reproduce also

the small-world effect at the global level. Using the algorithm explained above to add noise,

we find that the average distance < d > over all pairs of vertices is

< d >∼ 2.61 lnN, (12)

(Fig. 7b), indicating that the fractal model predicts also the small-world effect. This is

akin to the ideas presented in Wattz-Strogatz, where starting with a regular network, the

small-world is obtained by adding a fraction of short cuts in the system. We notice that the

fraction of short cuts is very small.

VII. MODULARITY

The scale-invariant properties naturally lead to the appearance of a hierarchy of self-

similar nested communities or modules. In this new view, boxes represent nested modules

of different length scales. The importance of modular structures is stressed in biological

networks, where questions of function and evolutionary importance are put to the test

[18, 19, 20, 21]. The relevant question is whether the self-similar hierarchy of boxes en-

codes the information about the functional modules in biological networks. To answer this
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question we analyze the fractal metabolic network of E. coli [25] which has been previously

studied using standard clustering algorithms [19]. Here we show that by repeatedly applying

the renormalization we produce a renormalized tree whose branches are closely related to

the annotated biochemical classes of the products of the metabolic reactions such as carbo-

hydrates, lipids, amino acid biosynthesis, etc. We renormalize the network at a given box

size and cluster the substrates which belong to the same box and repeat the procedure to

generate the hierarchical tree shown in Fig. 8a and explained in detail in Fig. 8b. The main

known biochemical classes of the substrates emerge naturally from the renormalization tree

indicating that the boxes capture the modular structure of the metabolic network of E. coli.

VIII. VULNERABILITY TO INTENTIONAL ATTACKS

Finally our results suggest the importance of self-similarity in the evolution of the topol-

ogy of networks. Understanding the growth mechanism is of fundamental importance as it

raises the question of its motivation in Nature. For instance, given that systems in biol-

ogy are fractals, could there be an evolutionary drive for the creation of such networks? A

parameter relevant to evolution is the robustness of the network, which can be compared

between fractal and non fractal networks.

Non-fractal scale-free networks, such as the Internet, are extremely vulnerable to targeted

attacks on the hubs [9, 10]. When a small fraction of nodes (those with highest degree) are

removed the network collapses. In such non-fractal topologies, the hubs are connected and

form a central compact core such that the removal of few largest hubs has catastrophic con-

sequences for the network. Here we show that the fractal property of networks significantly

increases the robustness against targeted attacks since the hubs are more dispersed in the

network (see Fig. 8c). This could explain why evolutionary constrained biological networks

have evolved into a fractal architecture.

IX. CONCLUSIONS

Our results paint a picture of nodes organized around disperse hubs in self-similar nested

modules [21] characterized by different functionalities that compartmentalize the hubs, iso-

late them [22], and protect them from a failure at the system level [33]. These modules
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function relatively autonomously so that a failure in one module may not propagate so eas-

ily to the next. This may provide significant higher protection against intentional attacks

reducing the high vulnerability— the Achilles’ heel— of non fractal scale-free networks.
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(a)
time evolution

Ñ(t) = 19 Ñ(t − 1) = 4

renormalization
N = 19 NB(ℓB) = 4

Mode I

Mode II

(b)

Only Mode I

t − 1t

(c)

Only Mode II

t − 1t

FIG. 1: Self-similar dynamical evolution of networks. (a) The dynamical growth process can be

seen as the inverse renormalization procedure with all the properties of the network being invariant

under time evolution. In this example Ñ(t) = 19 nodes are renormalized with NB(ℓB) = 4 boxes

of size ℓB = 3 so that Ñ(t − 1) = 4 nodes in the previous time step. The central box has a hub

with khub = 7 links, then k̃(t) = 7. After renormalization, kB(ℓB = 3) = 3 so that k̃(t − 1) = 3

for the central box. Out these three links, two are via a hub-hub connection (Mode I), thus

nh(ℓB) = 2 and E(ℓB) = 2/3, for this case. (b) Analysis of Mode I, only. Starting with the

four nodes at t − 1 in the figure, at the next time step mk̃(t − 1) (m = 2 in this example) new

nodes are generated for each node with degree k̃(t − 1). In Mode I this implies n = 2m + 1 (since

Ñ(t + 1) = Ñ(t)(1 + m < k >) and s = m + 1. The diameter of the network grows additively

as: L̃(t + 1) = L̃(t) + 2 (a = 1 and L0 → ∞) and therefore L̃(t) ∼ 2t. For this mode we obtain a

non-fractal topology: NB(lB)/N ∼exp(− ln n
2 lB) and kB(lB)/khub ∼ exp(− ln s

2 lB). This is a direct

consequence of the linear growth of the diameter L̃(t). In fact since a = 1 for this mode, then

dB = ln n/ ln a → ∞ and dk = ln s/ ln a → ∞. Moreover, the additive growth in the diameter

with time assures that the network is small-world. This mode is similar to a class of models called

pseudo-fractals [30, 31]. (c) Mode II alone produces a scale-free with a fractal topology but not the

small-world effect. Here the boxes are connected via non-hubs. In this case the diameter increases

multiplicatively L̃(t + 1) = 3L̃(t), with n = 2m + 1, s = m, a = 3 leading to an exponential growth

in the diameter and therefore to a fractal topology with finite dB and dk since a 6= 1. However, the

multiplicative growth of L̃(t) leads to the disappearance of the small-world effect, which is replaced

by a power-law dependence.
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FIG. 2: Empirical results on real complex networks. (a) Fractal networks are characterized by a

power law dependence between NB and ℓB while (b) non fractal networks are characterized by a

exponential dependence. The main contention of this paper is that fractality arises due to the repul-

sion between hubs while non fractal networks the hubs are not disperse. (c) We compare the correla-

tion profiles of the fractal topology of the metabolic network of E. coli RE.coli (k1, k2)/RWWW(k1, k2)

and (d) the non-fractal topology of the Internet RInt(k1, k2)/RWWW(k1, k2), to the profile of the

WWW in search of a signature of the origin of fractality. The patterns reveal that the fractal

cellular networks are strongly anticorrelated. (e) Scale-invariant correlations in complex networks.

Scaling of E(ℓB) as defined in Eq. (9) for the fractal topology of the WWW with de = 1.5, and

the non-fractal topology of the Internet showing that fractal topologies are strongly anticorrelated

at all length scales. In order to calculate E (and in all the calculations in this study) we tile the

network by first identifying the nodes which are center of the boxes with the largest mass and

sequentially centering the boxes around these nodes.16
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FIG. 3: Quantifying the scale-invariant correlated topology of complex networks. (a) Factor

h(bk)/k as defined in the text for the fractal topology of the fractal WWW and the non-fractal

topology of the Internet, showing the two different scaling, confirming the values of the exponent de.

(b) Factor h(bk)/k for the WWW for different values of b showing that its definition is independent

of b. (c) Factor h(bk)/k for the WWW at different scales showing that it is scale-invariant. (d)

Same as (a) but for the biological networks of protein interactions and metabolic cellular. These

networks show stronger anticorrelations than the WWW.
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FIG. 4: Classification of complex networks. We quantify the fractality with the exponent dB and the

strength of anticorrelations with the exponent ǫ = 1+ de/dk (which is analogous to γ = 1+ dB/dk,

and can be calculated more accurately in particular for small networks. In general when ǫ = 1 we

have non fractal networks while for ǫ > 1 we have fractal networks. When the hubs are dispersed

in the network a fractal topology results. The available scale-free models are non fractals with

ǫ = 1 while the available regular fractals are not scale-free [17]. We also plot the prediction of the

minimal model for e = 1/2. We are motivated to do this, since the anticorrelated properties of

this model are intermediate between Mode I (e = 1) and Mode II (e = 0). For this model we find

analytically that γ = 2 + de/dk and dB = ǫ/(ǫ − 1). Thus dB → ∞ when ǫ → 1, signaling the lost

of fractality as the anticorrelations disappear in the system.
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FIG. 5: Predictions of the renormalization growth mechanism of complex networks. (a) Resulting

topology predicted by the minimal structure for e = 0.8. The colors of the nodes show the modular

structure with each color representing a different box. The growth process is in general a stochastic

combination of Mode I (with probability e) and Mode II (with probability 1 − e, see Fig. 1). We

obtain L̃(t + 1) = (3 − 2e)L̃(t) + 2e, and a = 3 − 2e and L0 = e/(1 − e). This model predicts

finite fractal exponents dB and dk for any value of e except for the singular value at e = 1 (Mode

I) where L0 → ∞, losing the fractal properties with dB → ∞ and dk → ∞. We note that L0 is a

lower cut-off for the power-law dependence which defines the fractal exponent dB . (b) Ratio of the

correlation profiles Re=0.8(k1, k2)/Re=1(k1, k2) between the model with e = 0.8 and Mode I. The

profile shows how e = 0.8 is more anticorrelated than Mode I of growth. (c) Plot of NB versus ℓB

showing that Mode I is non fractal (exponential decay) and e = 0.8 is fractal (power-law decay)

according to (b) and in agreement with the empirical results of Fig. 2. (d) Scaling of E(ℓB) versus

ℓB . The minimal model reproduces the behavior of fractal networks for e = 0.8 with E ∼ ℓ−0.66
B )

and non-fractal networks Mode I, e = 1, E ∼ constant) as found empirically in Fig. 2e.
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FIG. 6: Predictions of the renormalization growth mechanism of complex networks. The hallmark

of fractality [12] is predicted by the minimal mechanism: the global tiling of the network evidences

the fractality in the power-law dependence of the mass of the boxes, 〈MB〉, while the local average

of the cluster growing method 〈Mc〉, evidences the small-world effect. The exponential growth of

〈Mc〉 implies the small world effect as (ℓc ∼ ln〈Mc〉). We show simulations for different network

size. The scaling of 〈MB〉 does not show finite size effects. The initial exponential dependence

range of 〈Mc〉 increases as the size of the network increases.
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straight line gives the theoretical prediction of the model dB = 2. (b) Average of the shortest path

between two nodes as a function of the system size. The results verify that the model predicts the

small world properties: < d >∼ 2.61 ln N .
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FIG. 8: Practical implications of the renormalization growth approach and self-similarity. (a)

Renormalization tree of the metabolic network of E. coli leading to the appearance of the functional

modulus. Each level of the tree represents a step in the renormalization procedure. This scheme

identifies the hierarchy of self-similar modules which are in turn closely related to the known

biochemical classes of the substrates in the metabolic reactions. The colors of the nodes and

branches in the tree denote the main biochemical classes as: carbohydrates (violet), lipids (light

blue), proteins, peptides and aminoacids (green), nucleotides and nucleic acids (red), aromatic,

monocarbon compounds and essential elements (green), and coenzymes and prosthetic groups

(grey). (b) Details of the construction of three levels of the renormalization tree for ℓB = 3 for

14 metabolites in the carbohydrate biosynthesis class as shown in the shaded area in (a). (b)

Vulnerability under intentional attack of a non fractal network generated by Mode I (e = 1) and a

fractal network generated by Mode II (e = 0). The comparison is done between model networks of

the same γ = 2.8, the same number of nodes (74,000), the same number of links, the same amount

of loops and the same clustering coefficient. Thus, the difference in the resilience seen in this figure

is attributed solely to the different degree of anticorrelations. We plot the relative size of the largest

cluster, S, and the average size of the remaining isolated clusters, 〈s〉, after removing a fraction f of

the largest hubs for both networks. While both networks collapse at a finite fraction fc, evidenced

by the decrease of S toward zero and the peak in 〈s〉, the fractal network has a significantly larger

threshold (fc ≈ 0.09) compared to the non-fractal threshold (fc ≈ 0.02) suggesting a significantly

higher robustness of the fractal modular networks to intentional attacks.
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